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Abstract. Lattice dynamics calculations for the Cs2CdBr4 crystal in the high-temperature
orthorhombic phase(Pnma) and in the monoclinic phase(P21/n11) at ∼195 K were carried
out. The model was based on the atom–atom potential function which comprised the long-
range Coulombic, short-range and covalent interactions. Comparison of the calculated phonon
frequencies with the experimental ones obtained from far-infrared reflectivity and Raman scattering
measurements gives a reasonable agreement in most cases. A possible origin of the incommensurate
phase transition was discussed on the basis of a coupling between low-lying62 phonon branches.
Using group-theory analysis and the calculated phonon dispersion branches, it is shown that the
P21/n11–P 1̄ phase transition is very probably induced by the condensation of a phonon mode at
the Brillouin zone boundary.

1. Introduction

In the previous paper [1] (hereafter denoted as paper I) we have reported on a detailed far-
infrared (FIR) investigation of Cs2CdBr4 crystal in all of its structural phases. Our main
attention was attracted to the temperature evolution of the lattice vibrations in Cs2CdBr4 at
the phase transitions, in particular at the incommensurate phase transition. Experimental FIR
reflectivity spectra were evaluated on the basis of a phenomenological four-parameter oscil-
lator model [2]. It would be of interest to understand some lattice dynamics peculiarities
of Cs2CdBr4 crystal on a more microscopic level. For example, it is desirable to obtain
information about the nature of modes observed experimentally, to perform their eigenvector
assignment, to explain the origin of the TO–LO mode splitting and to try to understand the
phase transitions.

The first theoretical work on the microscopic basis for the lattice dynamics study of A2BX4

compounds was done by Haque and Hardy [3]. As was shown in their paper, in the framework
of the rigid-ion model for K2SeO4 crystal, the lowest-lying62 branch has a minimum near
k = (1/3)a∗, in agreement with the neutron scattering results [4]. A semi-empirical version
of the rigid-ion model was used also for the study of the temperature changes of the calculated
phonon dispersion relation for K2SeO4 [5]. Softening of the62 branch was found for this
model atk = 0.27a∗. A very careful lattice dynamics study of LiKSO4 crystal in the two
phases (space groupsP63 andP31c) was carried out by Chaplotet al [6]. Taking into
account the Coulombic and short-range interactions, as well as covalent interactions within
SO4 groups, the authors of reference [6] have shown that softening of the E+

1 symmetry branch
occurred at a point near to 0.4c∗. Phonon dispersion curves were calculated also for the
CsLiSO4 crystal [7] for bothPnma andP1121/n structures. However, in thePnma phase
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two unstable branches represented by imaginary frequencies appeared, which implies that the
Pnma structure of CsLiSO4 crystal is unstable. Recently, a lattice dynamics calculation for the
Cs2HgCl4 crystal in the framework of the rigid-ion model was carried out to interpret Raman
scattering measurements in thePnma phase [8].

Another simulation of the lattice dynamics was performed usingab initio potentials [9–
11]. By means of molecular dynamics and lattice dynamics calculations, it was shown that
the instability appears at the pointk = (1/2)(b∗ + c∗) in the Pna21 phase of Rb2 ZnCl4
[10] and K2ZnCl4 [11] crystals. This type of instability leads to phase transitions which are
accompanied by unit-cell doubling along both theb- and thec-axis.

In this paper we report on the results of the lattice dynamics simulation of Cs2CdBr4 in
the high-temperature phase I (Pnma) and monoclinic phase IV (P21/n11) (see the sequence
of phase transitions in paper I).

2. Crystal structure and group-theory classification of lattice vibrations

At room temperature the four molecules of Cs2CdBr4 are arranged in the orthorhombicPnma
unit cell (a = 10.235 Å,b = 7.946 Å,c = 13.977 Å [12]) as shown in figure 1. The atomic
coordinates at room temperature (phase I) [12] and at 195 K (phase IV, space groupP21/n11,
a = 10.201 Å, b = 7.856 Å, c = 13.949 Å, α = β = γ = 90◦ [13]) are listed together
with the corresponding distances within the tetrahedra in table 1. At the phase transition into

Figure 1. Cs2CdBr4 crystal structure (according to reference [12]).



Lattice dynamics simulation of Cs2CdBr4 crystal 3617

Table 1. Atomic coordinates of Cs2CdBr4 crystal and distances within a tetrahedron in thePnma

(I) phase at room temperature (according to reference [12]) and in theP21/n11 phase (IV) taken
at 195 K (according to reference [13]).

Pnma P21/n11

x y z x y z

Cs1 0.1236 0.25 0.0960 Cs1 0.1224 0.2596 0.0997
Cs2 −0.0170 0.25 0.6762 Cs2 −0.0158 0.2595 0.6756
Cd 0.2225 0.25 0.4236 Cd 0.2226 0.2472 0.4243
Br1 −0.0243 0.25 0.4119 Br1 −0.0264 0.2532 0.4140
Br2 0.3204 0.25 0.5926 Br2 0.3228 0.2875 0.5917
Br3 0.3209 −0.0094 0.3426 Br3 0.3237−0.0312 0.3623

Br4 0.3131 0.4844 03176

Cd–Br1 2.532 Å Cd–Br1 2.532 Å
Cd–Br2 2.566 Å Cd–Br2 2.572 Å
Cd–Br3 2.558 Å Cd–Br3 2.587 Å

Cd–Br4 2.572 Å

the monoclinicP21/n11 phase III or IV (the authors of reference [13] supposed that in the
temperature region 237> T > 158 K there exists only one phase instead of two (phases III
and IV)), the mirror (m) and thea-glide planes vanish due to the rotation of CdBr4

2− tetrahedra
by 7–8◦ about thea-axis. At the same time, the tetrahedra become more distorted. Thus the
difference between the maximum and minimum of Cd–Br distances increases from 0.034 Å
at room temperature to 0.055 Å at 195 K.

As mentioned in paper I, internal vibrations of CdBr2−
4 groups have extremely low

frequencies (ν2 = 49, ν4 = 61 or 75,ν1 = 161 andν3 = 177 cm−1 [14]), which are
located in the region usual for external vibrations. Owing to this, the rigid-ion approximation
is not justified for the lattice dynamics study and instead we have used an atomic model [15]
which makes no distinction between the external and internal vibrations.

The classification of 84 normal modes in the initial phase I according to the irreducible
representations for the Brillouin zone centre (the0 point), boundary points (X, Y, Z points)
[16] and for the main directions (6, 1, 3) in the Brillouin zone was performed in paper I
where it is given as table 3.

Using the standard group-theoretical analysis [15] we have obtained the form of the
symmetry coordinates for the0, X, Y, Z, 6, 1 and3 wave vectors which correspond to
the atomic displacements classified according to the irreducible representations. According to

Table 2. Compatibility relations between the irreducible representations along the main directions
of the Brillouin zone in theP21/n11 (C5

2h) phase (0< µ1, µ2, µ3 < 1/2).

0 6 X 0 1 Y 0 3 Z
(k = 0) (k = µa∗) (k = 1

2a
∗) (k = 0) (k = µb∗) (k = 1

2b
∗) (k = 0) (k = µc∗) (k = 1

2c
∗)

21Ag 21Ag 21Ag 21Z1

4261 4211 4231

21Au 21Bu 21Bu 21Z4

84X 84Y
21Bg 21Bg 21Bg 21Z3

4262 4212 4234

21Bu 21Au 21Au 21Z2
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Table 3. Comparison of the calculated and experimental values of the phonon frequencies (in cm−1)
near the Brillouin zone centre at room temperature in thePnma phase (QTO: quasi-transverse
optic modes; QLO: quasi-longitudinal optic modes—see the text).ν1 andν3 are symmetric and
asymmetric internal stretching vibrations of CdBr2−

4 groups, respectively. Our experimental Raman
data are compared with the data from reference [20].

Ag(xx, yy, zz) B1g(xy) B2g(xz) B3g(yz)

Raman Raman Raman Raman
Calc- Calc- Calc- Calc-
ulations Our data [20] ulations Our data [20] ulations Our data [20] ulations Our data [20]

23 21 18 23 21 26 22 23 22
27 28 28 28 39 39 30 33 28
31 46 43 43 33 40 43 46
36 68 66 66 50 64
44 42 40 70 71 54 52 54 68 68 71
54 58 105 81 57 ν1 107
69 69 70 145 174 176 73 65 68ν3 146 172 175
93 81 84 ν3 181 183 183 93 81 ν3 181 181 183

135 137
143 146

ν1 175 173 175 ν1 177 172 175
ν3 187 184 ν3 188 187 186
ν3 206 194 200 ν3 206 198

table 5 of paper I, the normal modes in the phase IV (and III) at the Brillouin zone centre are
classified as follows:

0(IV ) = 21Ag + 21Bg + 21Au + 21Bu.

The correlation diagram for the irreducible representation in phase IV is presented in table 2.

3. Model

It is obvious that Cs, Cd and Br atoms in the Cs2CdBr4 crystal are linked by different types
of bond. For simulation of ionic bonds between Cd and Br atoms which belong to different
CdBr2−4 groups and Cs atoms, we have used a two-body interatomic potential in the following
form [17]:

V (rkk′) = e2

4πε0

Z(k)Z(k′)
rkk′

+ a exp

(
− brkk′

R(k) +R(k′)

)
(1)

where the first term corresponds to the long-range Coulombic interactions and the second one
describes the short-range repulsive interaction of Born–Mayer type.ε0 is the static permittivity;
Z(k) andR(k) are the effective charge and radius of atomk, respectively;rkk′ is the distance
between the atomsk andk′.

In order to approximate the covalent stretching interactions within the Cd–Br bond, we
have used, in accordance with [6], the following expression:

V (rCdBr) = −D exp

(
−n

2

(rCdBr− r0)2
rCdBr

)
(2)

whererCdBr is the distance between covalently linked Cd and Br atoms;n,D andr0 are treated
as parameters.
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Table 3. (Continued)

Au B1u B2u B3u

Calculations IR [1] Calculations IR [1] Calculations IR [1] Calculations

Acoustic Acoustic Acoustic
16 17 QTO,kx 34 30 TO 24 QLO,kx
30

{
TO, ky 37 38 LO 24 TO,ky

36 18 QLO,kz 47 42 TO

{
QTO,kz

65 31 28 QTO,kx 57 60 LO 33 33 QLO,kx
72

{
TO, ky 61 64 TO 32 32 TO,ky

103 34 34 QLO,kz 62 65 LO

{
QTO,kz

142 44 44 QTO,kx 70 70 TO 44 47 QLO,kx
ν3 180

{
TO, ky 81 73 LO 43 43 TO,ky

50 49 QLO,kz 103 TO

{
QTO,kz

58 50 QTO,kx 103 LO 51 51 QLO,kx
{

TO, ky 143 TO 49 49 TO,ky
61 61 QLO,kz 146 LO

{
QTO,kz

64 62 QTO,kx ν3 183 181 TO 69 69 QLO,kx
{

TO, ky 196 187 LO 65 52 TO,ky
69 66 QLO,kz

{
QTO,kz

71 71 QTO,kx 79 73 QLO,kx
{

TO, ky 75 73 TO,ky
84 72 QLO,kz

{
QTO,kz

QTO,kx 96 93 QLO,kx
98 TO,ky 85 93 TO,ky

{
QLO, kz

{
QTO,kz

135
QTO,kx 138 QLO,kx

{
TO, ky 135 TO,ky

136 QLO,kz

{
QTO,kz

142 QTO,kx 142 QLO,kx
{

TO, ky 141 TO,ky
144 QLO,kz

{
QTO,kz

ν1 173 176
QTO,kx ν1 182 QLO,kx

{
TO, ky 181 TO,ky

174 182 QLO,kz

{
QTO,kz

ν3 184 187 QTO,kx ν3 197 193 QLO,kx
{

TO, ky 191 187 TO,ky
196 188 QLO,kz

{
QTO,kz

QTO,kx ν3 205 205 QLO,kx
ν3 199 205 TO,ky 198 204 TO,ky

201

{
QLO, kz

{
QTO,kz

For the simulation of bending vibrations which are determined by the Br–Br interactions
within the same CdBr2−

4 group, the following potential was used [6]:

V (rBrBr) = e2

4πε0

Z2(Br)

rBrBr
+ Sa exp

(
− brBrBr

2R(Br)

)
− W

r6
BrBr

(3)

whereS andW are parameters. The first and second terms in (3) have meanings similar to
those used in expression (1) and the third one is the potential of the van der Waals type.

The unknown parameters in expression (1) were determined from the lattice equilibrium
conditions [18] and from the condition of electroneutrality of the whole Cs2CdBr4 molecule.
Thea- andb-constants have the valuesa = 1822 eV andb = 12.364.
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The parameters of the bond-stretching (equation (2)) and Br–Cd–Br angle-bending (equ-
ation (3)) potentials were obtained from the condition of agreement between the calculated
and experimental frequencies of IR- and Raman-active modes. The experimental IR mode
frequencies were taken from paper I. The Raman mode frequencies were taken from our
own unpublished room temperature measurements which are as regards the main features in
agreement with the previous Raman studies of Cs2CdBr4 [19, 20] (see table 3).

4. Results and discussion

As follows from structural considerations (see table 1), it is reasonable to assume different
values of the chargesZ(k) and radiiR(k) for (i) Cs1 and Cs2 and (ii) Br1, Br2 and Br3 atoms.
As was shown in reference [13], there are eleven Br ligand atoms around Cs1 and nine Br
atoms around Cs2, which leads to much a smaller valence of Cs1 compared to Cs2. The
calculated valence sum in thePnma phase around Cs1 was 0.53 whereas that around Cs2 was
1.02. In theP21/n11 phase the valence of the Cs1 atom increases to 0.63 while that of Cs2
remains at 1.01 [13]. Our calculations based on the conditions for crystal structure stability
(i.e. minimization of the resulting forces acting on individual atoms) yield the values presented
in table 4. As one can see, the charge values of Cs1 and Cs2 atoms obtained are in a very good
agreement with those proposed in reference [13]. Suitable values of the rest of the parameters,
namelyD = 2.807 eV,r0 = 2.208 Å,n = 7.372 Å−1, S = 1358 andw = 1008 eV Å6, were
used for the calculations for bothPnma andP21/n11 phases.

Table 4. Effective charges and radii used in the atomic model simulation of Cs2CdBr4 crystal in
thePnma andP21/n11 phases.

Pnma

Type of ion,k Cs1 Cs2 Cd Br1 Br2 Br3

Z(k) 0.533 1.099 0.727−0.566 −0.643 −0.575
R(k) 2.853 2.808 0.833 1.506 1.524 1.546

P21/n11

Type of ion,k Cs1 Cs2 Cd Br1 Br2 Br3 Br4

Z(k) 0.64 1.04 0.642−0.549 −0.69 −0.543 −0.540
R(k) 2.900 2.723 0.950 1.461 1.414 1.580 1.570

Using the above-specified model parameters (table 4) and the crystal structure (table 1),
we have calculated the phonon dispersion relations for thePnma (I) andP21/n11 (IV) phases.
The lattice dynamics simulation of Cs2CdBr4 crystal was carried out by means of the program
DISPR [21] modified by us in such a way as to take into account the stretching and bending
interactions within the CdBr2−

4 groups.

4.1. Phase I (Pnma)

A comparison of the phonon frequencies calculated near the Brillouin zone centre along the
main directions of the Brillouin zone at the pointska∗ ,kb∗ ,kc∗ ' 0.001 with those obtained
from IR and Raman measurements is given in table 3. In the case of the IR-active B1u and B3u

modes, it is not always the case that all atomic displacements in the eigenvectors are directed
along the dipole moment direction of the corresponding eigenvectors. That is, from the analysis
of corresponding symmetry coordinates and eigenvectors it follows that the displacements for
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both B1u and B3u symmetry types are localized generally in thexz-plane, whereas their dipole
moments are directed along thez-axis andx-axis, respectively, as required by symmetry (see
tables 2 and 4 in paper I). We call these modes quasi-transverse optical (QTO) and quasi-
longitudinal optical (QLO) depending on whether the dipole moment is perpendicular to or
along the propagation vector direction. As one can see from table 3, there is a reasonable
agreement between theory and experiment for most TO and QTO modes. A slightly less good
agreement was found for LO and QLO modes.

Table 5. The correlation diagram of the internal modes of Cs2CdBr4 in the high-temperature
(Pnma) phase (according to reference [20]).

Free-ion
(CdBr4)2−

symmetry Site symmetry Factor-group symmetry
Td C1h C2h

6Ag(ν1, ν2, 2ν3, 2ν4)
A1(ν1)

E(ν2)

2F2(ν3, ν4)

6A′(ν1, ν2, 2ν3, 2ν4)

3A′′(ν2, ν3, ν4)

6B2g(ν1, ν2, 2ν3, 2ν4)
6B1u(ν1, ν2, 2ν3, 2ν4)
6B3u(ν1, ν2, 2ν3, 2ν4)

3B1g(ν2, ν3, ν4)
3B3g(ν2, ν3, ν4)

3Au(ν2, ν3, ν4)
3B2u(ν2, ν3, ν4)

It should be stressed that in the case of Cs2CdBr4 crystal, division of the normal modes
into the external and internal ones is not possible. Using the eigenvector analysis, one can see
that all of the phonon modes have both external and internal components. However, the last
three highest-frequency modes of Ag, B2g, B1u and B3u symmetry and also one of the highest-
frequency modes of B1g, B3g, Au and B2u types have predominantly internal character. The
relevant assignment of these internal stretchingν1- andν3-vibrations is indicated in table 3.
This is in good agreement with the correlation diagram of internal vibrations of CdBr2−

4 groups
(see table 5). Nevertheless, according to the eigenvector analysis the second- and third-highest-
frequency modes of B1g (at 105 and 145 cm−1), B3g (at 107 and 146 cm−1), Au (at 103 and
142 cm−1) and B2u (at 103 and 143 cm−1) symmetry also reveal predominantly internal type
(e.g. the displacements of Cd and Br atoms in the B2u modes above 140 cm−1 are three to
four orders of magnitude larger than those in the other B2u modes). It is worth noting that
the second highest observed B1g and B3g modes (at 174 and 172 cm−1, respectively) have
appreciably higher frequency than calculated. This indicates that the internal (ν3) character is
even stronger than that calculated in our model.

The calculated phonon dispersion relations along the maina∗-, b∗- andc∗-directions of
the Brillouin zone in thePnma phase are presented in figure 2. As can be seen from this
figure, the phonon modes become twofold degenerate at the X, Y and Z points of the Brillouin
zone boundary, as follows from symmetry considerations (see table 3 in paper I).

It is worth drawing attention to the peculiarity of the low-frequency part of the dispersion
branches along thea∗-direction shown in figure 3. As one can see, the phenomenon of
anticrossing of the two lowest TO branches of62 symmetry seems to occur due to the repulsion
of these branches. In reference [22] it was proposed that the mechanism of the I→ II phase
transition consists in just such a coupling of two low-lying62 branches. A coupling term
like Ski R

∗
ki
− S∗ki Rki (whereSk=0 andRk=0 are the corresponding normal-mode coordinates

at the0 point) in the free-energy expansion is equivalent to a Lifshitz-like invariant in the
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Figure 2. Phonon dispersion curves of Cs2CdBr4 in thePnma phase. The figures are drawn in
the extended-zone scheme.
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Figure 2. (Continued)

Figure 3. Low-frequency branches of Cs2CdBr4 in thePnma phase along thea∗-direction. The
dashed lines indicate the possible anticrossing of phonon branches.
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Figure 4. The low-frequency part of the phonon dispersion branches of the Cs2CdBr4 crystal in
phase IV (P21/n11).
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Figure 4. (Continued)

form (dS/dx)R − S(dR/dx). At room temperature the calculated lower-frequency coupled
62 phonon branch has a shallow minimum near 0.15a∗ (see figure 3) close to the observed
value of the IC wave vectorki . Therefore it seems reasonable to assume that the normal–IC
transition atTi = 252 K is triggered by softening of this minimum. Due to the probable
order–disorder nature of the transition, this softening might not be complete.

It is worth noting that the active representation which induces the direct zone-centre I–
III transition is B3g, whereas the lowest62 branch ends in Au symmetry (figure 3). It is
therefore probable that both the I–II and II–III transitions are induced by softening of the
higher-frequency62 branch ending in B3g symmetry. This branch fork 6= 0 is bilinearly
coupled with the lowest62 branch by the above-mentioned Lifshitz-like invariant, which may
cause partial softening of the latter branch.

4.2. Phase IV (P21/n11)

The dispersion curves of Cs2CdBr4 in this phase were calculated at 195 K using atomic
coordinates and the effective parameters presented in tables 1 and 4, respectively. The
comparison of the calculated phonon frequencies at the pointka∗ = 0.001 with the experimental
ones is shown in table 6. According to our simulation, the values of most of the phonon
frequencies changed insignificantly with respect to those of the high-temperature phase I.
Only the frequencies in the region 85–145 cm−1 which correspond to the strongly mixed
external–internal vibrations for all of the symmetry types reveal appreciable lowering by about
8–10 cm−1. The low-frequency part of phonon dispersion curves in phase IV is presented
in figure 4. One can see from this figure that there is considerable anticrossing of phonon
branches, implying substantial coupling among branches.
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Table 6. Comparison of the calculated and experimental phonon frequencies (in cm−1) near the
Brillouin zone centre in the monoclinic phase (IV) at 195 K.

Ag Bg Au Bu

Calculations Raman [20] Calculations Raman [20] Calculations IR [1] Calculations IR [1]

16 16 22 21 Acoustic Acoustic
23 18 25 17 Acoustic
25 29 27 24 17 19
33 32 33 29 28 22
34 38 38 31 34 33 31
36 39 45 46 38 40 38
42 42 49 46 45 43 48
45 48 52 54 52 52 47 53
53 58 55 62 67 61 61
68 69 69 69 70 69 68
69 73 73 71
72 72 76 76 73 73
86 84 85 82 85 85 89 83

101 99 97 97 98
124 124 120 121
136 138 133 134
138 140 140 138
170 170 171 170 174 169
177 187 178 180 178 181 177
185 195 186 189 190 196 185 183
204 205 204 193 204 208 203 203

Concerning the IV→ V transition, an underdamped soft mode was observed in Raman
spectra of Bg(xy, xz) symmetry near this transition [19, 22]. More recent Raman investigation
[20] has shown that the soft mode is active only in phase V and vanishes in phase IV. That is
why the authors of reference [20] have assumed that the unit cell multiplies at the IV–V phase
transition. As seen from table 6, the lowest calculated mode frequency of Bg symmetry at 195 K
has the value 22 cm−1 (the experimental value is 21 cm−1 [19]). Modes of other symmetries
have even smaller frequencies at the Brillouin zone centre, namely 17 cm−1 (16 cm−1 [20],
Ag), 16 cm−1 (Au) and 17 cm−1 (19 cm−1 [1], Bu) (experimental values of the frequencies
are indicated in parentheses). Taking into account the compatibility relations of irreducible
representations along the main directions of the Brillouin zone (see table 2) and the phonon
dispersion in phase IV (see figure 4), we can suppose that the phonon branches with the
frequencies lower than that of the lowest Bg mode but of the same symmetry away from the
0 point (e.g. Bu along thea∗-direction and Au along theb∗- andc∗-directions) would lose
their stability before the lowest Bg mode. However, from symmetry, the softening of Au or
Bu modes cannot lead to theP 1̄ space group for phase V, which was observed experimentally
[13, 23]. Therefore, softening of the Bg mode at the Brillouin zone centre at the IV–V phase
transition seems to be unlikely.

There is another possibility for realization of theP 1̄ space group in phase V, namely
condensation of some phonon at the Brillouin zone boundary. TheP 1̄ space group could be
realized due to phonon softening at points A, Z and E (for the notation see [16]) or due to
the softening of a doubly degenerate phonon mode which transforms according to the two-
dimensional irreducible representation at points Y and C. All such transitions are connected
with a multiplication of the unit cell. This could explain the observation of the soft mode in
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Raman scattering [20] in phase V only. Additional experimental and theoretical investigations
(e.g. simulation of temperature changes of phonon spectra in phase IV, like in reference [24])
are desirable in order to find unambiguously the soft mode and order parameter for the IV–V
phase transition.

5. Conclusions

Investigation of the lattice stability conditions in the framework of the atomic model confirms
the assumption proposed in reference [13] of inequivalent distribution of effective charges
of (i) Cs1 and Cs2 ions and (ii) Br1, Br2 and Br3 ions in the Cs2CdBr4 crystal. The large
difference between the Cs1 and Cs2 charge (0.53 and 1.02, respectively) in thePnma phase
is reduced at 195 K due to the increase of the Cs1 charge (to 0.64).

The reasonable agreement between the calculated and experimental values of the phonon
frequencies reveals the expediency of the Cs2CdBr4 lattice dynamics simulation using and
interatomic potential which includes long-range Coulombic, short-range and covalent-bond
interactions. The study of the phonon spectrum was complicated due to the mixed external–
internal character of nearly all phonon modes.

Numerical lattice dynamics simulation demonstrates the substantial coupling of low-lying
62 phonon branches at room temperature. It causes a shallow minimum nearki ≈ 0.15a∗ on
the lowest62 optic branch, whose softening could explain the appearance of the IC structure.
This result is in good agreement with the idea proposed in reference [22] that the IC phase
in isomorphous Cs2HgBr4 is realized due to the presence of a Lifshitz-like invariant in the
free-energy expansion.

From numerical simulations of the phonon dispersion branches and analysis of
experimental data, it follows that softening of any Bg mode at the Brillouin zone centre in
the P21/n11 phase IV is highly improbable. Instead, condensation of a phonon mode at
the Brillouin zone boundary (e.g. at the points Y (k = (1/2)b∗), Z (k = (1/2)c∗) or C
(k = (1/2)[b∗ + c∗]) is suggested, which could lead to theP 1̄ symmetry of phase V with
the unit-cell multiplication. However, in order to understand properly the mechanism of the
IV–V phase transition, as well as of the IC one, further experiments as well as lattice dynamics
simulations of lattice instability conditions at phase transitions are necessary.
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